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1 Smooth Manifolds

1.1 Topological Manifolds

Definition 1.1. Let X be a set. Furthermore, define a set 7 whose elements are subsets of X such that
e g XerT
e ABetT = ANBerT

e IfA,erforael, then, , Ay €T.

ael

Then, (X, 7) is a topological space. o

Sets in 7 are referred to as open sets. Subsets of a topological space are closed if their complements are
open. Furthermore, A is a neighborhood of p € X if there exists an open set containing p that is contained
in A.

Definition 1.2. Let X,Y be topological spaces. Then, a function f : X — Y is continuous if preimages
of open sets are open. o

Definition 1.3. A function f : X — Y is a homeomorphism if f is invertible and both f and its inverse
are continuous. o

Definition 1.4. Let (X, 7x) be a topological space and let Y C X. Then, Y inherits a topology from X,
defined as
Ty:{UﬂY|U€Tx}. <

If Y C X, then the inclusion map from Y to X is continuous with respect to the subspace topology.
Furthermore, the subspace topology is the coarsest topology (fewest open sets) for which the inclusion is
continuous.



Definition 1.5. A topological space X is Hausdorff if any two distinct points in the space have neigh-
borhoods that separate the two points (i.e. the neighborhoods do not intersect). o

Just as in metric spaces, we can define a notion of convergence on general topological spaces.

Definition 1.6. A sequence of points (z;) converges to z if for any U € X containing =, U D {x;};-  for
some N. o

Theorem 1.1. If X is Hausdorff, then limits of convergent sequences are unique.

Theorem 1.2. If X is a topological space such that for any two points p,q, there exists a real-valued
continuous function f such that f(p) # f(q), then X is Hausdorff.

Definition 1.7. A topological space X is second-countable if there exists a finite/countable collection of
open subsets of X that generates the topology of X. o

Definition 1.8. A space X is locally Fulidean of dimension n if for every p € X, there exists an open
neighborhood U of p and an open V' € R"™ such that U = V when both are equipped with the subspace
topology o

Observe that we can replace V' in the definition above with the unit open ball in R".

Definition 1.9. A topological space X is a topological manifold of dimension n if X is Hausdorff, second-
countable, and locally Euclidean of dimension n. o

The condition that X is Hausdorff is necessary; for example, the line with two origins is both second-
countable and locally Euclidean with dimension 1, but it is not Hausdorff.

The second-countable condition is also necessary; consider any uncountable set S with the discrete
topology and define X = S x R (equivalently, the disjoint union of an uncountable number of real lines).
This set X is clearly Hausdorff and locally Euclidean, but not second-countable. A connected counterex-
ample is the long line.

Theorem 1.3. If M™ is a topological manifold and M' C M is open, then M’ is an n-dimensional
topological manifold.

Definition 1.10. Let M™ be a topological manifold. A (coordinate) chart on M is a pair (U, ) such
that U is open in M and ¢ : U — U is a homeomorphism to an open subset of R. U is referred to as a
coordinate domain. o

Note that a manifold is the union of all its coordinate domains. We can then write down the local
coordinates of a point as p(p) = (¢'(p), ..., ¢"(p)). We also refer to ¢! as a local parametrization.
Other examples of manifolds include R", S™, and RIP".

Definition 1.11. A space X is connected if X and & are the only clopen subsets of X. o

Definition 1.12. A space X is path-connected if for any p,q € X, there exists a continuous function
v :[0,1] — X such that v(0) = p and (1) = g¢. o

Path-connectedness implies connectednesss.



Definition 1.13. A space X is locally path-connected if every point has a path-connected, open neigh-
borhood. o

Theorem 1.4. Let M™ be a topological manifold. Then,
e M is locally path-connected.
e M is connected if and only if it is path connected.
e The components of M are the same as the path components.
Theorem 1.5. There are countably many charts (U;, ;) for any topological manifold M such that
¢i(Ui) = B1(0) € R”
and M =2, U;.

Lemma 1.1. If X is a second-countable topological space, then any open cover of X has a countable
subcover.

1.2 Smooth Structure

Definition 1.14. If (U, ), (V,4) are charts of a topological manifold M, then ¢ o ™! : (U NV) —
(U NV)is called a transition map (or alternatively, a change of coordinates map). o

Theorem 1.6. Transition maps are homeomorphisms.

Note that homeomorphisms may not preserve smoothness. Consider two charts on R™ (treated as
a manifold), (U,id) and (V,a™'), where @ : R® — R™ is a homeomorphism. Now, consider a function
f :R™ — R defined on the manifold. The problem is that o may distort the space in a way such that the
function f o «v is no longer smooth.

Definition 1.15. Two charts are smoothly compatible if the transition map between them is a C'*° diffeo-
morphism. o

Definition 1.16. An atlas A of a topological manifold M is a collection of charts of M that covers the
manifold. o

Definition 1.17. An atlas is smooth if every pair of charts in the atlas is smoothly compatible. o

Definition 1.18. An atlas A is a mazimal smooth atlas if there exists no other smooth atlas containing

A. o
Theorem 1.7. Every smooth atlas of a manifold is contained in a unique mazimal smooth atlas A.

We can replace smoothness in the theorems above by different differentiability classes (i.e. C*, C¥).
We could even think about charts that map into C", giving rise to complex manifolds.

Definition 1.19. A maximal smooth atlas A on a topological manifold M is called a smooth structure.
The pair (M, A) is referred to as a smooth manifold, and any chart in the atlas is referred to a smooth
chart. o



Example 1.1. A trivial example of a smooth manifold is R", where we take the maximal atlas to be that
which contains the chart (R, id). A

Example 1.2. Let V be a finite-dimensional vector space, and define
A={(V,p) | ¢:V — RV is a linear isomorphism } .
Define A be the maximal atlas containing A. Then, (V,A) is a smooth manifold. A

We can also construct smooth manifolds from certain subsets of smooth manifolds.

Theorem 1.8. Let (M, A) be a smooth manifold, and let M' C M be an open subset. Define A =
{(U,p) e A|UC M'}. Then, (M', A) is also a smooth manifold.

Note, however, that the maximal atlas is not unique.
Example 1.3. Consider R, and two maximal atlases
A = {maximal atlas containing (R,id)} and A’ = {maximal atlas containing(R,z — 2°)} .

Observe that x — 22 is not a diffeomorphism, and so the the identity map and this map are not smoothly
compatible. Therefore, A # A’. A

We can also construct smooth manifolds by taking products of smooth manifolds.

Theorem 1.9. Let M, M3*, ..., M be smooth manifolds. Then, the product [[;", M" is a smooth
manifold.

We now present a lemma for constructing smooth manifolds

Lemma 1.2. Let M be a set, and {(Ua, Pa)},e; @ family of injective maps ¢ : Uy, — R™ for some fized n.
Furthermore, assume that

o Foranya,B eI, (U, NU,) CR" is open.

e For any a, 3, the map o, © gogl c08(Ua NUg) = pa(Uy NUp) is smooth.
o M 1is covered by countably many U,.

e For every p,q € M, p # q, either

(a) there exists a € I such that p,q € U, or
b) there exists o, B € I such that p € U, q € Ug, where U, and Uz do not intersect.
B B

Then, there exists a unique topology on M and smooth structure such that all of the charts are contained
in the mazimal atlas.

The unique topology is given by
T={ACM]|p.(ANU,) is open in R"}.

Definition 1.20 (Grassmann manifolds). We define the Grassmann manifold Gry(R"), where 0 < k <n
as the set of linear subspaces of R" of dimension k. Note that Gr;(R") = RP"! o

4



1.3 Manifolds with Boundary

Define H" = {z > 0 | z € R"}. Recall that if A is any arbitrary subset of R™, then a function f: A — R™
is smooth if f can be extended to a smooth map defined on an open set containing A.

Theorem 1.10. A function f: U — R™, where U C H" is open, is smooth if [ is continuous and smooth
inV=H"NU, and all of the partial derivatives of f on V can be continuously extended to all of U.

Definition 1.21. A topological manifold with boundary of dimension n is a topological space that is
Hausdorff and second-countable such that every point is contained in an open set that is homeomorphic
to an open subset of H". o

In the case of manifolds with boundary, charts (U, ¢) can either be interior or boundary charts. A
chart is a interior chart if ¢(U) is contained in the interior of H". Otherwise, a chart is a boundary chart
is p(U) intersects the boundary of H".
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