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1 Smooth Manifolds

1.1 Topological Manifolds

Definition 1.1. Let X be a set. Furthermore, define a set τ whose elements are subsets of X such that

• ∅, X ∈ τ

• A,B ∈ τ =⇒ A ∩B ∈ τ

• If Aα ∈ τ for α ∈ I, then
⋃
α∈I Aα ∈ τ .

Then, (X, τ) is a topological space. �

Sets in τ are referred to as open sets. Subsets of a topological space are closed if their complements are
open. Furthermore, A is a neighborhood of p ∈ X if there exists an open set containing p that is contained
in A.

Definition 1.2. Let X, Y be topological spaces. Then, a function f : X → Y is continuous if preimages
of open sets are open. �

Definition 1.3. A function f : X → Y is a homeomorphism if f is invertible and both f and its inverse
are continuous. �

Definition 1.4. Let (X, τX) be a topological space and let Y ⊆ X. Then, Y inherits a topology from X,
defined as

τY = {U ∩ Y | U ∈ τX} . �

If Y ⊆ X, then the inclusion map from Y to X is continuous with respect to the subspace topology.
Furthermore, the subspace topology is the coarsest topology (fewest open sets) for which the inclusion is
continuous.
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Definition 1.5. A topological space X is Hausdorff if any two distinct points in the space have neigh-
borhoods that separate the two points (i.e. the neighborhoods do not intersect). �

Just as in metric spaces, we can define a notion of convergence on general topological spaces.

Definition 1.6. A sequence of points (xi) converges to x if for any U ∈ X containing x, U ⊃ {xi}∞i=N for
some N . �

Theorem 1.1. If X is Hausdorff, then limits of convergent sequences are unique.

Theorem 1.2. If X is a topological space such that for any two points p, q, there exists a real-valued
continuous function f such that f(p) 6= f(q), then X is Hausdorff.

Definition 1.7. A topological space X is second-countable if there exists a finite/countable collection of
open subsets of X that generates the topology of X. �

Definition 1.8. A space X is locally Eulidean of dimension n if for every p ∈ X, there exists an open
neighborhood U of p and an open V ∈ Rn such that U ∼= V when both are equipped with the subspace
topology �

Observe that we can replace V in the definition above with the unit open ball in Rn.

Definition 1.9. A topological space X is a topological manifold of dimension n if X is Hausdorff, second-
countable, and locally Euclidean of dimension n. �

The condition that X is Hausdorff is necessary; for example, the line with two origins is both second-
countable and locally Euclidean with dimension 1, but it is not Hausdorff.

The second-countable condition is also necessary; consider any uncountable set S with the discrete
topology and define X = S × R (equivalently, the disjoint union of an uncountable number of real lines).
This set X is clearly Hausdorff and locally Euclidean, but not second-countable. A connected counterex-
ample is the long line.

Theorem 1.3. If Mn is a topological manifold and M ′ ⊆ M is open, then M ′ is an n-dimensional
topological manifold.

Definition 1.10. Let Mn be a topological manifold. A (coordinate) chart on M is a pair (U,ϕ) such
that U is open in M and ϕ : U → Ũ is a homeomorphism to an open subset of R. U is referred to as a
coordinate domain. �

Note that a manifold is the union of all its coordinate domains. We can then write down the local
coordinates of a point as ϕ(p) = (ϕ1(p), . . . , ϕn(p)). We also refer to ϕ−1 as a local parametrization.

Other examples of manifolds include Rn, Sn, and RPn.

Definition 1.11. A space X is connected if X and ∅ are the only clopen subsets of X. �

Definition 1.12. A space X is path-connected if for any p, q ∈ X, there exists a continuous function
γ : [0, 1]→ X such that γ(0) = p and γ(1) = q. �

Path-connectedness implies connectednesss.
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Definition 1.13. A space X is locally path-connected if every point has a path-connected, open neigh-
borhood. �

Theorem 1.4. Let Mn be a topological manifold. Then,

• M is locally path-connected.

• M is connected if and only if it is path connected.

• The components of M are the same as the path components.

Theorem 1.5. There are countably many charts (Ui, ϕi) for any topological manifold M such that

ϕi(Ui) = B1 (0) ∈ Rn

and M =
⋃∞
i=1 Ui.

Lemma 1.1. If X is a second-countable topological space, then any open cover of X has a countable
subcover.

1.2 Smooth Structure

Definition 1.14. If (U,ϕ), (V, ψ) are charts of a topological manifold M , then ψ ◦ ϕ−1 : ϕ(U ∩ V ) →
ψ(U ∩ V ) is called a transition map (or alternatively, a change of coordinates map). �

Theorem 1.6. Transition maps are homeomorphisms.

Note that homeomorphisms may not preserve smoothness. Consider two charts on Rn (treated as
a manifold), (U, id) and (V, α−1), where α : Rn → Rn is a homeomorphism. Now, consider a function
f : Rn → R defined on the manifold. The problem is that α may distort the space in a way such that the
function f ◦ α is no longer smooth.

Definition 1.15. Two charts are smoothly compatible if the transition map between them is a C∞ diffeo-
morphism. �

Definition 1.16. An atlas A of a topological manifold M is a collection of charts of M that covers the
manifold. �

Definition 1.17. An atlas is smooth if every pair of charts in the atlas is smoothly compatible. �

Definition 1.18. An atlas A is a maximal smooth atlas if there exists no other smooth atlas containing
A. �

Theorem 1.7. Every smooth atlas of a manifold is contained in a unique maximal smooth atlas A.

We can replace smoothness in the theorems above by different differentiability classes (i.e. Ck, Cω).
We could even think about charts that map into Cn, giving rise to complex manifolds.

Definition 1.19. A maximal smooth atlas A on a topological manifold M is called a smooth structure.
The pair (M,A) is referred to as a smooth manifold, and any chart in the atlas is referred to a smooth
chart. �
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Example 1.1. A trivial example of a smooth manifold is Rn, where we take the maximal atlas to be that
which contains the chart (Rn, id). 4

Example 1.2. Let V be a finite-dimensional vector space, and define

A =
{

(V, ϕ)
∣∣ ϕ : V → RdimV is a linear isomorphism

}
.

Define A be the maximal atlas containing A. Then, (V,A) is a smooth manifold. 4

We can also construct smooth manifolds from certain subsets of smooth manifolds.

Theorem 1.8. Let (M,A) be a smooth manifold, and let M ′ ⊆ M be an open subset. Define A′ =
{(U,ϕ) ∈ A | U ⊆M ′}. Then, (M ′,A′) is also a smooth manifold.

Note, however, that the maximal atlas is not unique.

Example 1.3. Consider R, and two maximal atlases

A = {maximal atlas containing (R, id)} and A′ =
{

maximal atlas containing(R, x 7→ x3)
}
.

Observe that x 7→ x3 is not a diffeomorphism, and so the the identity map and this map are not smoothly
compatible. Therefore, A 6= A′. 4

We can also construct smooth manifolds by taking products of smooth manifolds.

Theorem 1.9. Let Mn1
1 ,Mn2

2 , . . . ,Mnm
m be smooth manifolds. Then, the product

∏m
i=1M

ni
i is a smooth

manifold.

We now present a lemma for constructing smooth manifolds

Lemma 1.2. Let M be a set, and {(Uα, ϕα)}α∈I a family of injective maps ϕ : Uα → Rn for some fixed n.
Furthermore, assume that

• For any α, β ∈ I, ϕ(Uα ∩ Uα) ⊆ Rn is open.

• For any α, β, the map ϕα ◦ ϕ−1β : ϕβ(Uα ∩ Uβ)→ ϕα(Uα ∩ Uβ) is smooth.

• M is covered by countably many Uα.

• For every p, q ∈M , p 6= q, either

(a) there exists α ∈ I such that p, q ∈ Uα or

(b) there exists α, β ∈ I such that p ∈ Uα, q ∈ Uβ, where Uα and Uβ do not intersect.

Then, there exists a unique topology on M and smooth structure such that all of the charts are contained
in the maximal atlas.

The unique topology is given by

τ = {A ⊆M | ϕα(A ∩ Uα) is open in Rn} .

Definition 1.20 (Grassmann manifolds). We define the Grassmann manifold Grk(Rn), where 0 ≤ k ≤ n
as the set of linear subspaces of Rn of dimension k. Note that Gr1(Rn) = RPn−1 �
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1.3 Manifolds with Boundary

Define Hn = {x ≥ 0 | x ∈ Rn}. Recall that if A is any arbitrary subset of Rn, then a function f : A→ Rm

is smooth if f can be extended to a smooth map defined on an open set containing A.

Theorem 1.10. A function f : U → Rm, where U ⊆ Hn is open, is smooth if f is continuous and smooth
in V = Hn◦ ∩ U , and all of the partial derivatives of f on V can be continuously extended to all of U .

Definition 1.21. A topological manifold with boundary of dimension n is a topological space that is
Hausdorff and second-countable such that every point is contained in an open set that is homeomorphic
to an open subset of Hn. �

In the case of manifolds with boundary, charts (U,ϕ) can either be interior or boundary charts. A
chart is a interior chart if ϕ(U) is contained in the interior of Hn. Otherwise, a chart is a boundary chart
is ϕ(U) intersects the boundary of Hn.
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