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Motivation

® Model-free reinforcement learning (RL) often requires
thousands or millions of trials to reach good policies.

e To apply RL in real-world, and especially in robotics,
we are often limited by the number of trials that can
be performed due to cost and time constraints.

® How can we increase the data-efficiency of current
RL algorithms?

® Contribution:

1) We propose a model-based RL approach based
on learning deep probabilistic dynamics models.
Our approach significantly outperforms the SOTA of
both model-based and model-free RL methods.

2) We perform a thorough ablation study of the
importance of uncertainty for model-based RL
approaches based on neural networks.

Neural Network Dynamics Models

® To model the true forward dynamics f, we assume
that the distribution of the next state is given by

— N (pg(s¢,a0), Zo(s¢,ar)). (1)

e Probabilistic models assume a diagonal covariance
matrix (i.e. uncorrelated output dimensions).
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Compared to models without variance output,
probabilistic models are better equipped to capture
aleatoric uncertainty since they can model

heteroscedastic noise.

® Probabilistic ensembles consist of probabilistic
models trained with (2). For ensembles with NV
networks, the output distribution mean ( is the
output mean, while the covariance is given by
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Unlike their non-ensembled counterparts, these
models can represent epistemic uncertainty (model
uncertainty).

Uncertainty Propagation
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® As illustrated by the HalfCheetah results, our method
can achieve better performance than most model-free
methods, while using significantly less data.

Ablation Study

e \We also studied how the choice of model and
propagation method affects performance; details are
provided in the paper.
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Conclusion & Future Work

® \We presented a model-based RL method that makes
use of deep probabilistic dynamics models.

® OQur approach is significantly more data-efficient
than SOTA model-free approaches (25x faster), and

can scale to high-dimensional tasks.
e |n future work, we plan to evaluate

our approach on real-robots.

Presented by Kurtland Chua - kchua@berkeley.edu



