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Motivation

How can we increase the data-efficiency of current 
RL algorithms?
Contribution:
 1) We propose a model-based RL approach based 
on learning deep probabilistic dynamics models.
Our approach significantly outperforms the SOTA of 
both model-based and model-free RL methods.

2) We perform a thorough ablation study of the 
importance of uncertainty for model-based RL 
approaches based on neural networks.

Model-free reinforcement learning (RL) often requires 
thousands or millions of trials to reach good policies.
To apply RL in real-world, and especially in robotics,
we are often limited by the number of trials that can 
be performed due to cost and time constraints.

 

 

 
Conclusion & Future Work

We presented a model-based RL method that makes 
use of deep probabilistic dynamics models. 
Our approach is significantly more data-efficient 
than SOTA model-free approaches (25x faster), and 
can scale to high-dimensional tasks.
In future work, we plan to evaluate 
our approach on real-robots.

 

 

 

 

 

 

Neural Network Dynamics Models

 
To model the true forward dynamics , we assume
that the distribution of the next state is given by

 
Probabilistic models assume a diagonal covariance
matrix (i.e. uncorrelated output dimensions).

Compared to models without variance output, 
probabilistic models are better equipped to capture 
aleatoric uncertainty since they can model 
heteroscedastic noise.

Unlike their non-ensembled counterparts, these 
models can represent epistemic uncertainty (model 
uncertainty).

Probabilistic ensembles consist of probabilistic
models trained with . For ensembles with
networks, the output distribution mean is the
output mean, while the covariance is given by

 

 

Uncertainty Propagation
Trajectory 
Sampling-1 (TS1) 
initializes particles 
and propagates each 
of them using a model 
sampled from an 
ensemble every time 
step.

We also studied how the choice of model and 
propagation method affects performance; details are 
provided in the paper.
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Ablation Study

Experimental Results
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As illustrated by the HalfCheetah results, our method 
can achieve better performance than most model-free 
methods, while using significantly less data.
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